www.fltk.net > tAn(A+B)等于多少

tAn(A+B)等于多少

tan(α+β)=(tanα+tanβ)/(1-tanα tanβ)tan(α-β)=(tanαtanβ)/(1+tanα tanβ)

tan(a+b)=-1,a+b=2kπ+3π/4,or a+b=2kπ+7π/4, 若a,b是三角形内角,则a+b=3π/4=135°.

tan(A+B)=tanA+tanB/1-tanAtanB

sin(A+B)=sinAcosB+cosAsinB cos(A+B)=cosAcosB-sinAsinB tan(A+B)=(sinAcosB+cosAsinB)/(cosAcosB-sinAsinB) 分子分母同除以cosAcosB => tan(A+B)=(tanA+tanB)/(1-tanAtanB)

-tanC

tan(a+b)=(tan(a)+tan(b))/(1-tan(a)tan(b))

sin(A+B) = sinAcosB+cosAsinB cos(A+B) = cosAcosB-sinAsinB tan(A+B) = (tanA+tanB)/(1-tanAtanB) cot(A+B) = (cotAcotB-1)/(cotB+cotA)

tan=(tana+tanb)/(1-tana*tanb)

tan(a+b)=(tana+tanb)/(1-tanatanb)

tan(α+β)=(tanα+tanβ)/(1-tanαtanβ)

网站地图

All rights reserved Powered by www.fltk.net

copyright ©right 2010-2021。
www.fltk.net内容来自网络,如有侵犯请联系客服。zhit325@qq.com