www.fltk.net > 求不定积分S E^%xCosxDx

求不定积分S E^%xCosxDx

解:此题可用分步积分进行解答 ∫ e^(-x)cosxdx = -e^(-x)cosx - ∫ e^(-x)sinxdx = -e^(-x)cosx + e^(-x)sinx -∫ e^(-x)cosxdx 即 原式=[ -e^(-x)cosx + e^(-x)sinx ]/2 =(sinx-cosx)*e^(-x)/2 祝您学习愉快

不定积分 e^cosx =-e^cosx /sinx

∫e^xcosxdx =∫e^xd(sinx) =e^xsinx-∫sinxe^xdx =e^xsinx+∫e^xd(cosx) =e^xsinx+e^xcosx-∫e^xcosxdx 所以 2∫e^xcosxdx=e^xsinx+e^xcosx ∫e^xcosxdx=(e^xsinx+e^xcosx)/2 +C

用分部积分法, 设u=e^x,v'=cosx, u'=e^x,v=sinx, 原式=e^xsinx-∫e^xsinxdx, u=e^x,v'=sinx, u'=e^x,v=-cosx, 原式=e^xsinx-(-cosx*e^x+∫e^xcosxdx) =e^xsinx+cosx*e^x-∫e^xcosxdx, 2∫e^xcosxdx=e^xsinx+cosx*e^x ∴∫e^xcosxdx=(e^xsinx+cosx*e^x...

此题可用分部积分法如下图间接计算。经济数学团队帮你解答,请及时采纳。谢谢!

连续使用分部积分

解:此题可用分步积分进行解答 ∫ e^(-x)cosxdx = -e^(-x)cosx - ∫ e^(-x)sinxdx = -e^(-x)cosx + e^(-x)sinx -∫ e^(-x)cosxdx 即: 原式=[ -e^(-x)cosx + e^(-x)sinx ]/2 =(sinx-cosx)*e^(-x)/2

利用两次分部积分可以如图间接求出原函数,可以取a=-1,b=1。

网站地图

All rights reserved Powered by www.fltk.net

copyright ©right 2010-2021。
www.fltk.net内容来自网络,如有侵犯请联系客服。zhit325@qq.com