www.fltk.net > 求不定积分S E^%xCosxDx

求不定积分S E^%xCosxDx

解:此题可用分步积分进行解答 ∫ e^(-x)cosxdx = -e^(-x)cosx - ∫ e^(-x)sinxdx = -e^(-x)cosx + e^(-x)sinx -∫ e^(-x)cosxdx 即 原式=[ -e^(-x)cosx + e^(-x)sinx ]/2 =(sinx-cosx)*e^(-x)/2 祝您学习愉快

用分部积分法, 设u=e^x,v'=cosx, u'=e^x,v=sinx, 原式=e^xsinx-∫e^xsinxdx, u=e^x,v'=sinx, u'=e^x,v=-cosx, 原式=e^xsinx-(-cosx*e^x+∫e^xcosxdx) =e^xsinx+cosx*e^x-∫e^xcosxdx, 2∫e^xcosxdx=e^xsinx+cosx*e^x ∴∫e^xcosxdx=(e^xsinx+cosx*e^x...

1:∫sin³xcosxdx=∫sin³xdsinx=1/4(sin^4x)+C 2:∫(x²+e²)dx=1/3(x³)+e²x+C

此题可用分部积分法如下图间接计算。经济数学团队帮你解答,请及时采纳。谢谢!

这是分部积分法的一种类型. ∫e^(-x) cosx dx =-∫e^(-x) dsinx =e^(-x)sinx+∫e^(-x) sinx dx =e^(-x)sinx-∫e^(-x) dcosx =e^(-x)sinx-e^(-x)cosx-∫e^(-x) cosx dx 移项,得∫e^(-x) cosx dx=1/2×e^(-x)(sinx-cosx)+C 同理,∫e^(-x) sinx...

见图

用分部积分法,设u=e^x,v'=cosx,u'=e^x,v=sinx,原式=e^xsinx-∫e^xsinxdx,u=e^x,v'=sinx,u'=e^x,v=-cosx,原式=e^xsinx-(-cosx*e^x+∫e^xcosxdx)=e^xsinx+cosx*e^x-∫e^xcosxdx,2∫e^xcosxdx=e^xsinx+cosx*e^x∴∫e^xcosxdx=(e^xsinx+co...

用分部积分法, 设u=e^x,v'=cosx, u'=e^x,v=sinx, 原式=e^xsinx-∫e^xsinxdx, u=e^x,v'=sinx, u'=e^x,v=-cosx, 原式=e^xsinx-(-cosx*e^x+∫e^xcosxdx) =e^xsinx+cosx*e^x-∫e^xcosxdx, 2∫e^xcosxdx=e^xsinx+cosx*e^x ∴∫e^xcosxdx=(e^xsinx+cosx*e^x)...

楼上三位,一致对e^x情有独钟,他们都是对的。 通常,这类题既有e^x又有sinx或cosx的积分题,一般的解法是: 1、选定e^x,或选定sinx、cosx,就得“从一而终”,用分部积分的方法计算, 中途不得更换。否则,一定解不出来; 2、积分过程中,连续两...

∫e^sinx(xcosx-sinx/cosx^2)dx =∫e^xsinx *xcosxdx -∫e^sinxsinxdx/(cosx)^2 =∫xe^sinxdsinx-∫e^sinxd(1/cosx) =∫xde^sinx-∫e^xsinxd(1/cosx) =xe^sinx-∫e^sinxdx-∫e^xsinxd(1/cosx) =xe^sinx-∫e^sinxdsinx/cosx-∫e^xsinxd(1/cosx) =xe^sinx-[∫d...

网站地图

All rights reserved Powered by www.fltk.net

copyright ©right 2010-2021。
www.fltk.net内容来自网络,如有侵犯请联系客服。zhit325@qq.com