www.fltk.net > 函数y=(x%1)E^(π/2+ArCtAnx)渐近线,B为什么等于.^π.不是等于%E^π?

函数y=(x%1)E^(π/2+ArCtAnx)渐近线,B为什么等于.^π.不是等于%E^π?

k=lim(x→+∞)(x-1)e^(π/2+arctanx)/x=e^π B=lim(x→+∞)[(x-1)e^(π/2+arctanx)-e^πx)]=lim(x→+∞)[(x-1)e^(π/2+arctanx)-e^π(x-1+1))=lim(x→+∞){(x-1)[e^(π/2+arctanx)-e^π)]-e^π} ∵lim(x→+∞)(x-1)[e^(π/2+arctanx)-e^π)]=lim(x→+∞)[e^(π/2+arctanx)-e^π)]

lim(x->+∞) [ f(x) - a1x]=lim(x->+∞) [ (x-1)e^(π/2+arctanx) - x.e^π]=lim(x->+∞){ [ x[ e^(π/2+arctanx) -e^π] - e^(π/2+arctanx) }=-e^π + lim(x->+∞) x[ e^(π/2+arctanx) -e^π]=-e^π + lim(x->+∞) [ e^(π/2+arctanx) -e^π] /(1/x) (0/0)=-e^π + lim(x->+∞) [ 1/(1+x^2) ]e^(π/2+

x-->+∞时(π/2)+arctanx-->π,曲线y=(x-1)e^[(π/2)+arctanx]有渐近线y=(x-1)e^π,同理,x-->-∞时(π/2)+arctanx-->0,曲线y=(x-1)e^[(π/2)+arctanx]有渐近线y=(x-1).

说明:曲线是y=(x-1)e^(πarctanx/2)吧.若是,求解如下.解:显然,此题没有垂直渐近线,只有斜渐近线 设它的斜渐近线为y=ax+b ∵a=lim(x->±∞)[(x-1)e^(πarctanx/2)/x] =lim(x->±∞)[(1-1/x)e^(πarctanx/2)] =(1-0)e^((π/2)(π/2)) =e^(±π/4) b=lim(x->±∞)

求函数y=(x-1)*e^(π/2+arctanx)的斜渐近线 解:x→+∞lim[(x-1)*e^(π/2+arctanx)]/x=x→+∞lime^(π/2+arctanx)-[x→+∞lim[e^(π/2+arctanx)]/x]=e^π=a x→+∞lim[(x-1)*e^(π/2+arctanx)-(e^π)x]=x→+∞lim[e^(π/2+arctanx)-(e^π)]x-{x→+∞lim[-e^(π/2+arctanx)]}=e^π=b

y=(x-1)e^(π/2+arctanx)lim(x→0)(x-1)e^(π/2+arctanx)=-e^(π/2)水平渐近线y=-e^(π/2)(x-1)e^arctanx=ye^(-π/2)lim(y→0)ye^(-π/2)=0lim(x→1)(x-1)e^(arctanx)=0垂直渐近线x=1y=(x-1)*e^(π/2+arctanx)的斜渐近线x→+∞lim[(x-1)*e^(π/2+arctanx)]/x=x→+∞lime^(

题目可能有误是不是 y=x(π/2-arctanx)lim(x→正无穷)x(π/2-arctanx)=lim(x→正无穷)(π/2-arctanx)/(1/x)=lim(x→正无穷)(-1/1-x^2)/ (-x^2)=1所以y=x(π/2-arctanx)的水平渐近线是 y=1

y=x(π/2+arctanx)的水平渐近线即为y=lim(x→无穷)x(π/2+arctanx)lim(x→无穷)x(π/2+arctanx)=lim(x→无穷)(π/2+arctanx)/(1/x)应用罗比达法则,分子分母同时求导lim(x→无穷)(π/2+arctanx)/(1/x)=lim(x→无穷)-x^2/(1+x^2)=-1水平渐近线是y=-1

没有水平渐近线,斜渐近线倒是有两条:y=x+π/2和y=x-π/2.x趋于无穷时,y也趋于无穷,所以没有水平渐近线.如果x趋于正无穷时,y趋于某个常数C1,那么有水平渐近线y=C1;如果x趋于负无穷时,y趋于某个常数C2,那么有水平渐

求得直线的斜率k后再求截矩b.b=y-kx取极限.以当x趋于负无穷时为例,b=lim(x-1)e^(pi/2+arctanx)-x=limx(e^(pi/2+arctanx)-1)-lime^(pi/2+arctanx)=-1-1=-2( 前一个极限可以用洛必达法则做).

相关搜索:

网站地图

All rights reserved Powered by www.fltk.net

copyright ©right 2010-2021。
www.fltk.net内容来自网络,如有侵犯请联系客服。zhit325@qq.com